

Gut Microbiome Dynamics and Their Effects on Skin Health

Rutuja Nerurkar, Sara A. Khan* and Nupur Mehrotra

Department of Biochemistry, SVKM's Mithibai College of Arts, Chauhan Institute of Science and Amrutben Jivanlal College of Commerce and Economics (Autonomous) Affiliated to University of Mumbai India.

Article Info

Received: 07-04-2020

Revised: 16-05-2020

Accepted: 14-06-2020

ABSTRACT

The microbiome, which includes the billions of microorganisms found on and within the human body, plays a crucial role in regulating host health. The consequences of these microbial communities on the skin and other physiological systems have garnered a lot of interest, and one such community is the gut microbiome. This article provides a comprehensive overview of the intricate relationship between the microbiota in the stomach and the health of the skin. The gut microbiome affects skin health in a few different ways. Research has shown that some compounds produced by microbes in the gut may influence the function of the epidermal barrier and the regulation of the immune response. These

compounds include vitamins, secondary metabolites, and short-chain fatty acids. Another factor that controls the gut-skin axis is the intricate web of immunological signalling channels that control the flow of information between the two organs. Skin conditions such as rosacea, psoriasis, eczema, and others are associated with imbalances in the microbiome of the digestive tract. The development of new methods for improving health and treating or preventing various skin diseases might be greatly aided by a better understanding of the processes behind this link. The specific microbial taxa and chemicals that are crucial to this intricate gut-skin axis interaction should be the focus of future research efforts aimed at preserving optimum epidermal health.

Keywords: Gut-Skin Axis, Dysbiosis, Gut Microbiome, and Probiotics.

INTRODUCTION:

The human microbiota consists of the 10-100 trillion symbiotic microbial cells that are carried by every person, with the majority of these cells being stomach bacteria. Dysbiosis in the microbiome has been associated with a wide range of diseases and conditions^{3, 4}, including inflammatory bowel disease, MS, type 1 and type 2 diabetes, allergies, and asthma. They have an impact on almost every physiological system in some way, shape, or form, since they strengthen the immune system, defend against pathogens, and facilitate metabolic processes. Many of

the functions essential to human life and physiology are performed by the microorganisms in the gut, which include around five million genes and one thousand species of bacteria. More and more evidence is pointing to a connection between the human gut flora and overall health. In a balanced microbiome, the microbes play an important part in the host's metabolism of food, xenobiotics and medications, and in maintaining immunomodulation and the gut's structural integrity as a barrier against pathogens and toxins. The skin is the biggest

organ in the human body a shield against cuts and infections 8. The gut, a virtual organ composed of billions of microbial communities, has a direct correlation to the host's health and lifespan. The gut microbiota may have both beneficial and bad effects on the homeostasis of skin and gut tissues9, 10. Skin symptoms are common in gastrointestinal (GI) disorders. It seems that the gut microbiota has a significant role in the development of several inflammatory diseases.eleven, twelve. An essential regulator of the immune system, the microbiome maintains homeostasis via its bidirectional interactions with many tissues and organs. Therefore, a diverse immune response is associated with an imbalance in the skin and gut microbiota, which in turn promotes the development of skin diseases such as atopic dermatitis, psoriasis, acne vulgaris, dandruff, and melanomas13. Increasing data suggests that the diverse gut microbiota may impact the skin flora, however the exact process by which this occurs remains unknown14. It is now feasible to treat skin problems by regulating gut microbiota, since studies have linked an imbalance in the gut microbiome to inflammatory skin ailments. As an alternative to synthetic pharmaceuticals, natural products are gaining popularity. Therefore, taking probiotics orally may be an easy, safe, and inexpensive way to treat skin irritation15. Therefore, the microbiota in the host's digestive tract might be a potential target for modulating the immune response. A lot of skin problems are marked by ongoing inflammation. Systemic inflammation caused by changes in the gut microbiota may have an effect on skin health. The gut microbiome regulates the production of inflammatory chemicals that impact the skin's inflammatory response. Skin inflammation may be exacerbated by an unhealthy gut microbiome. There is a substantial proportion of immune system cells located in the gut, and the gut microbiome helps these cells mature. The immune system learns to differentiate between safe and harmful chemicals when the microbiota in the stomach are balanced. This equilibrium10 affects the immune

system's ability to prevent skin disorders caused by improper inflammatory responses. Infections are warded off by the skin's epidermal barrier. Curiously, proteins essential for skin barrier maintenance may be influenced by the gut microbiome. In contrast to imbalances, which may compromise the epidermal barrier's integrity, a well-balanced gut microbiota can actually promote its health. The topic of skin and gut allostasis and homeostasis has been extensively studied in recent years, with supporting data indicating a robust bidirectional link between the two systems10, 16. The presence of bacterial DNA translocation provides evidence of this, since it has been recently associated with the makeup of the gut microbiota and implies that circulating bacterial DNA in blood from the intestinal lumen may be connected to recent active plaque psoriasis breakouts17. Intestinal microecological disturbance and an imbalance in the richness and composition of the gut microbiome cause changes in gut microbial metabolism and immune responses. There is a close relationship between these alterations and both physiological and pathological processes, making them vital for human health maintenance. Symbiotic and potentially harmful microbes feed off of each other less often, and the structural variety of gut microbiota protects the body against pathogen invasion. As a key player in vitamin, amino acid, bile acid, and short-chain fatty acid metabolism, the gut microbiota also stimulates the adult innate and adaptive immune systems.18. Changes to the microbiome may influence the immune system's reaction to cancer therapy and are linked to the disease's development. Particularly, the gut microbiota may alter the response of melanoma immunotherapy, according to recent studies19. Unfortunately, there has been a lack of study on the importance of the skin microbiota in the microenvironment of epidermal tumours and the interplay between the gut microbiome and skin microbiome in the progression of melanoma. Several gastrointestinal and skin illnesses are thought to be caused by neurogenic inflammation, complicated

innervation of the gut and skin, and an overly common network of signals and cellular protagonists, according to the gut-brain-skin axis (Arck et al., 20). Initiated in 2007, the human microbiome project (HMP) seeks to describe the mouth cavity's indigenous microorganisms, by investigating the many microenvironments that exist inside the human body, including the skin, nose, vagina, and faeces. Using samples collected from different anatomical locations at different dates, the HMP was able to determine the "normal" human microbiome in the end. Metagenomic sequencing²² and 16S ribosomal RNA (16S rRNA) amplification²¹ are two examples of modern techniques that have circumvented these limitations. This review delves into the complex web of relationships between gut microbiota and skin health, discussing the links between the two and how they affect one another and our general health. The microbes in the digestive tract Humans are home to a diverse array of microbes, including bacteria, viruses, and even some eukaryotic organisms. In good times and bad, these bacteria may have a major effect on our physiological system. Metabolic processes, protecting us from hazardous invaders, priming the immune system, and the effect on most physiological systems, both directly and indirectly, are all influenced by them. The gut microbiota's role in human health is being acknowledged more and more. It has long been acknowledged that the host's health is directly correlated to the host's gut microbiota. The microbiota in the human digestive tract is mostly composed of firmicutes and bacteroidetes. Research such as the Human Microbiome Project and MetaHIT, which examine the human microbiome by analysing all bacterial genes, has shown that there may be around 10 million genes that are not redundant. Verrucomicrobia and Actinobacteria are the phyla listed below. This basic profile is consistent over time and space, even if the distribution of gut microbiota shows variations at the genus level and beyond.

Moving from the stomach and oesophagus to the rectum causes a change in the kind and abundance of bacteria. When it comes to the later and distal gut⁷, the former has values ranging from 10¹ to 10¹² per gramme of contents, while the latter has values ranging from 10¹ to 10¹². There are two types of gut microbiota: transverse and longitudinal. Each kind represents the unique physiological characteristics of a particular site. Chemical, nutritional, and immunological gradients are believed to influence the density and composition of the microbiota in the gut. Due to its short transit time and high concentration of oxygen, acids, and antimicrobials, the small intestine is often considered to have an optimal environment. Urban or rural housing, smoking, medical procedures, melancholy, and geographical location are only a few of the many environmental factors linked to microbiota production. Inhabitant microbial communities in the human digestive system impact several facets of health. When healthy, they provide energy and nutrients to the host by fermenting indigestible food components non the large intestine, which helps the host's metabolism and immune system.

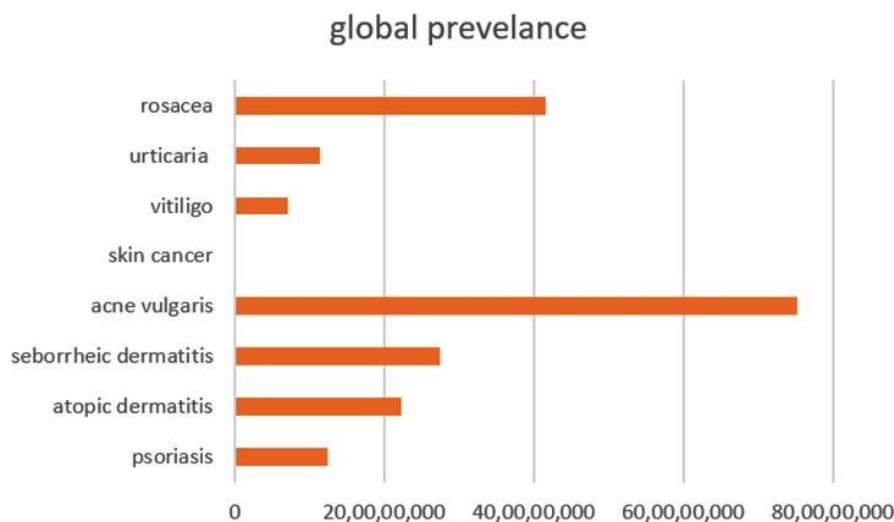
Conversely, they may play a role in inflammation and infection, be associated with gastrointestinal issues, and may impact the development of hypertension and obesity (35). Sometimes changes to the gut flora become noticeable a long time before symptoms of a disease appear. Biomarkers for early illness risk detection and potential preventive therapies might be these alterations. The growing body of knowledge linking specific pathogenic pathways to microbiological disease causes is central to all these results, and it is this developing body of evidence that provides new microbiological targets for medicines. Nutritional adjustments, microbial supplements, and faecal microbiota transplantation have all shown promise in restoring a healthy gut microbiota and so reversing the effects of certain illnesses. Understanding the gut-skin axis

Intestinal microbiota impact skin homeostasis¹⁰, and while the precise processes by which gut commensals regulate systemic immunity are not entirely known, they seem to be related. It has recently been suggested that intestinal microbes may have a more direct influence on skin physiology, pathology, and immune response^{10, 37, 38}, due to the gut microbiota and the skin metastasis of their metabolites. How the gut microbiota affects skin health is not well understood. The skin and the intestines are continually exposed to environmental influences, and they are dynamic, complex immunological and neuroendocrine organs that sustain a broad diversity of microbiomes^{39, 40}. The gut-skin axis and the bacteria in the intestines have received a lot of attention and research concerning the skin microbiota and the subsequent skin diseases like atopic dermatitis, psoriasis, acne vulgaris, and others. Excluding aetiological variables such as environmental, dietary, or pharmaceutical exposures, these research explore further⁴¹. The use of probiotics and prebiotics in the treatment of dermatoses, in conjunction with dietary and lifestyle modifications, suggests the existence of an important gut-skin axis, as shown in the research by Liedtke⁴². Achieving visually pleasing, healthy skin requires a delicate balance of gut microbes. Intestinal elevation or repair therapies are required as adjuvant therapy for the successful treatment of inflammatory skin diseases. Even with these treatments, traditional dermal therapy may work better. Inflammation in other areas of the body may be caused by interactions between the immune system and the gut microbiota, which can educate regulatory T lymphocytes^{43, 44}. While research into the gut microbiome's impact in inflammatory skin disorders and autoimmune diseases is ongoing, regulatory T cells seem to play a key role in these disorders⁴⁵.

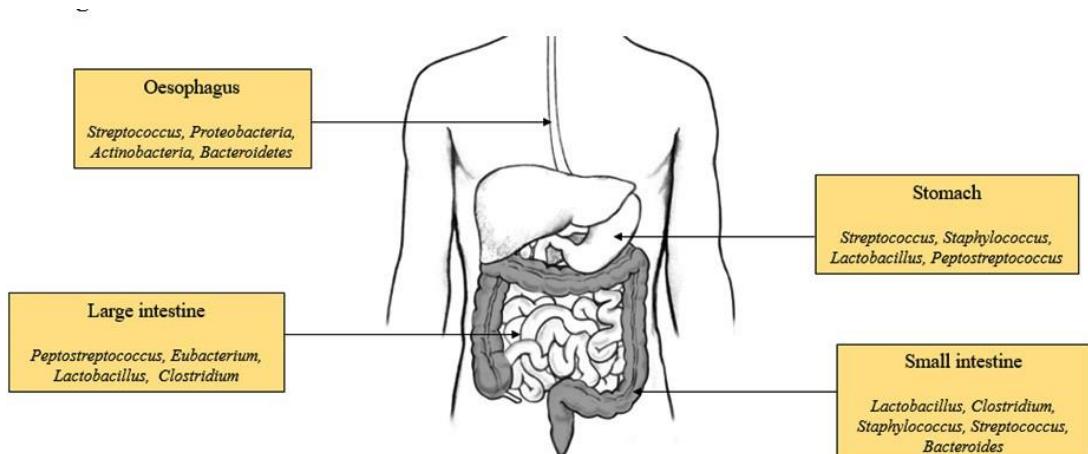
Dry skin

White, scale-covered, clearly demarcated red plaques are the hallmark of psoriasis, a persistent inflammatory skin disorder. Systemic symptoms are common in people with psoriasis, a persistent skin illness.

Psoriasis may manifest at any age, however most people experience its onset during the twenties and thirties. There is no clear clinical trajectory⁴⁹. Half of all people with psoriasis have a first-degree relative who also suffers from the condition. Inheritance is complicated, according to research⁴⁹. When people smoke, their psoriasis risk and severity increase. There is a correlation between psoriasis and both obesity and alcohol abuse. People with psoriasis may be at a higher risk for certain patterns of alcohol abuse and obesity, while these associations may not be causative. Psoriasis vulgaris is the most common and well understood inflammatory skin disease in humans that involves dendritic cells and T lymphocytes. Psoriatic cytokines IL-17, interferons, tumour necrosis factor, and IL-22 are produced in significant quantities when inflammatory myeloid dendritic cells release interleukin-23 and interleukin-12. These cells in turn excite T lymphocytes, Type 1 T helper (Th1) cells, and T helper 22 (Th22) cells. Psoriatic inflammation is worsened by these cytokines via their effects on keratinocytes. Numerous studies have shown that the bacteria in our gut have a major impact on our metabolism, immune system, and intestinal permeability^{52, 53}. The gut microbiome dysbiosis, sometimes called gut dysbiosis^{54, 55, 56, 57}, has been associated with inflammatory bowel diseases, depression, cardiovascular disease, metabolic syndrome, and psoriasis comorbidities. There is a strong correlation between psoriasis and changes in gut microbial composition, however the exact nature of this correlation has been shown to vary greatly across studies⁵⁸. There is a strong correlation between psoriatic flare-ups and microbiome imbalances, which are characterised by altered diversity and structure and the proliferation of opportunistic pathogens. In a study conducted by Zakostelska et al.⁶⁰, it was shown that imiquimod enhanced the Th17 response and caused lower psoriasis-like skin inflammation in germ-free mice compared to conventional animals. This suggests that gut dysbiosis may be a pathogenic factor in psoriasis. The gut flora


promotes a healthy equilibrium between regulatory T cells and Th17 effector cells 61. Huang et al. 62 sequenced the faeces of 35 people with psoriasis and 27 healthy controls using 16S rRNA and then used informatics methods to analyse the data. It was found that the microbiome of the group with psoriasis was different from the healthy group. People with moderate psoriasis, healthy controls, and severe psoriasis all have distinct microbiomes 62. Scientific evidence points to the microbiome as an essential player in IgA synthesis and the maintenance of effector/regulatory T cell balance in the gut. In addition, a misbalance of gut flora has been associated with psoriasis and other chronic inflammatory skin illnesses. A strong therapeutic target for healing this condition 63 might therefore be the microbiota. Food, lifestyle, comorbidities, antibiotic courses, and other variables may cause substantial alterations to the human gut microbiome composition later in life, but it stabilises around the age of two. 64 The makeup of the human gut microbiome starts to develop soon after birth. There are more anaerobic bacteria than aerobic ones in the gut microbiome. The bulk of these bacteria are Gram-negative and Gram-positive and belong to genera including *Bacteroides*, *Bifidobacterium*, *Eubacterium*, *Fusobacterium*, and *Ruminococcus*.

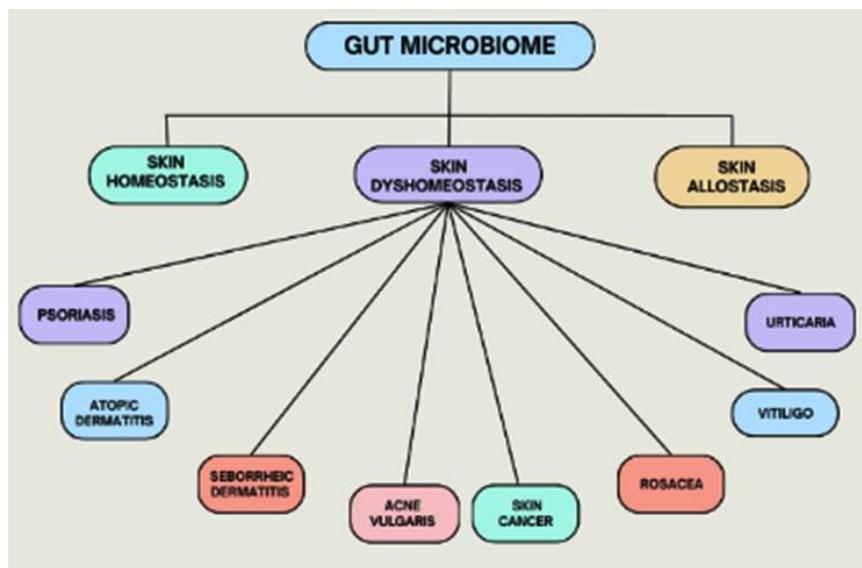
multiplied by more than 100. Intestinal microbiome 65 is mostly composed of *Bacteroidetes* and *Firmicutes*. Arumugam et al. 66 discovered three separate enterotypes, or clusters, of gut microbiome bacteria based on which species were most prevalent. There are three enterotypes: *Bacteroides*, *Prevotella*, and *Ruminococcus*. The most common enterotype is three, which comprises the *Ruminococcus* and *Akkermansia* genera. It is possible that the medications used to treat psoriasis affect the bacterial composition of the stomach. Polak et al. 64 found that the most notable changes in gut physiology in psoriatic patients include microbiota dysbiosis, decreased


short chain fatty acid synthesis, increased generated trimethylamine-N-oxide, and dysregulation of pathways regulating the balance of lymphocyte populations. Guttate psoriasis is a subtype of psoriasis that is often caused by a streptococcal infection. It is more common in children and teenagers than in adults. There is less information available on the clinical history of guttate psoriasis, however it is known to have faster involution and longer remission periods than other types of psoriasis. aberrant cytokine profiles are associated with aberrant cytokine levels, according to the discovery that patients' gut microbiota patterns were dysbiotic compared to healthy controls. Gut microbiota were thought to have a pivotal role in clinical psoriasis diagnosis and therapy as potential therapeutic targets or biomarkers 70. In the last 20 years, researchers have uncovered the immunological history of psoriasis and how it connects to adaptive immune pathways, namely IL-17 and IL-23 71. Reducing psoriasis-related, pro-inflammatory, and Th17-associated cytokines such as tumour necrosis factor (TNF)-, IL-17A, and IL-23 72 was seen in mice treated with *Lactobacillus pentosus*. The relationship between bacteria and the immune system is of paramount clinical importance. Despite their efficacy in treating psoriasis, the monoclonal antibodies ixekizumab, guselkumab, and secukinumab have mixed results when used to treat inflammatory bowel disease (IBD). Clinic trials for biologics that inhibit IL-17A or its receptor have exacerbated inflammatory bowel disease (IBD) 73, 74. Patients suffering from psoriasis who participated in a research conducted by Huang et al. 71 individuals undergoing treatment with IL-23 and IL-17 inhibitors saw distinct changes in the make-up of their gut flora. Inhibitors of interleukin (IL)-23 and IL-17 may collaborate with the gut microbiome to reduce skin inflammation, as shown by significant differences in the comparative abundance of bacterial taxa between responders and non-responders. How gut microbes link to skin psoriasis seems to be fairly complex. Research on the gut

microbiota has consistently shown significant alterations in psoriatic patients. Additional research is required to fully understand the therapeutic potential of changes in gut flora in psoriasis patients 64. Itchy skin condition Atopic dermatitis (AD) is a skin disorder characterised by chronic, recurrent eczema-like symptoms. Atopic dermatitis affects around 15–20% of children and 1-3% of adults globally, and its prevalence has increased two to threefold in rural nations⁷⁵. The underlying mechanism of eczema isn't acknowledged correctly, and the treatment is often very sensitive, despite the fact that atopic dermatitis exhibits signs of skin barrier deformity and immunological divagation. Substantial evidence suggests that, in comparison to controls, people with AD have an unbalanced microbial architecture and reduced microbial diversity in their skin and gut. This, in turn, leads to the emergence of complaints and atopic dermatitis (Atopic March⁷⁶). The diversity of the gut microbiome was less diverse and the relative abundance of beneficial bacteria like *Bifidobacterium* and *Lactobacillus* was lower in AD patients compared to healthy controls; in contrast, the prevalence of *Staphylococcus aureus*, *Clostridium difficile*, and *Escherichia coli* was higher in AD patients. The microbial colonisation and adaptations were shown to occur before any clinical signs in early infancy, suggesting that an imbalance in gut microbes might be a cause of AD⁷⁷. Furthermore, host-commensal interactions impact the development of children's immune systems, leading to an increased occurrence of disorders such as atopic dermatitis. Skin problems in old age are influenced by the cutaneous microbiota. Consequently, a decline in microbiome diversity is associated with worse disease severity and increased colonisation of dangerous bacteria such *Staphylococcus aureus* in AD patients⁷⁸. Symptoms that are more serious skin microbiota, particularly *S. aureus*, and AD. infections caused by *Staphylococcus aureus* and *Malassezia*⁷⁹. Intestinal microecology is a unique and ever-changing environment that is influenced by dietary choices, lifestyle

habits, and mental stress. Dysbiosis of gut microbial diversity and morphology causes intestinal microecological disruption and changes in gut bacterial metabolism and immunological reactivity. Given the close relationship between these alterations and physiological and pathological processes, their maintenance is essential for human health. By aiding in the metabolism of bile acids⁸⁰, short-chain fatty acids, amino acids, vitamins, and the gut flora, the adaptive and innate immune responses develop. Another proposed new target for AD¹⁰ prevention and treatment is the "gut-skin" axis. The interaction between gut microbiota and T and B lymphocytes may have systemic effects that extend beyond the gut, according to research by Atarashi et al.⁸¹. The migration of microbial antigens from the gut to the thymus by intestinal dendritic cells also led to gut microbial colonisation, which in turn increased the proliferation of microbiota and T lymphocytes in the thymus⁸². A new research found that 56 children diagnosed with atopic dermatitis had significantly elevated levels of myeloperoxidase and lipid hydroperoxide. However, oxidative stress responses are increased and antioxidant defences are decreased in AD, which may explain why blood levels of total antioxidant potential value are reduced. This means that alterations to the microorganisms in the gut play a pivotal role in the development of diseases characterised by aberrant immune responses⁸⁰. Dermis caused by seborrhoea Between one percent and three percent of Americans suffer from seborrhoeic dermatitis, a persistent relapsing erythematous scaly skin disorder. Its initial peak in incidence occurs within the first three months of life, and its second peak.

Fig. 1. Plot of the global prevalence of psoriasis, atopic dermatitis, seborrheic dermatitis, acne vulgaris, skin cancer, vitiligo and urticaria and rosacea^{23, 24, 25, 26, 27, 28, 29, 30}


Fig. 2. Microbiome composition in organs of the gastrointestinal tract

The presence of elevated reactivity to bacterial strains recovered from faeces was assessed by serum complement fixation tests in patients. This heightened reaction was more common among acne patients. Nearly 66% of the 57 acne patients had a positive response to stool-isolated coliforms⁹³, in contrast to 0% of the control individuals without active skin disease. More study of the gut microbiota

changes brought on by oral antibiotics and isotretinoin⁹⁶, as well as the enteral microbiome of acne patients, is necessary. A Skin Cancer Among white people, skin cancer is the most common kind of malignant tumour. The incidence rates of both melanoma and non-melanoma skin cancer are on the rise worldwide. Melanoma is 2.4% more likely to develop in

Caucasians during a lifetime, 0.1% in Blacks, and 0.5% in Hispanics. The risk of acquiring melanoma increases with age. Typically, people are in their 60s when they get a diagnosis. Approximately 1.5 times as many men as women may acquire melanoma. Research shows that there is no difference in the incidence rate between the sexes up to age 40, but beyond 75, the incidence is about three times greater in males.^{110, 111} It is possible that the mechanisms by which the skin microbiome increases or decreases the risk of certain cancers are similar to those that have been quite extensively studied in relation to the gut microbiome. In addition, the gut flora may influence the risk of skin and other organ cancers directly by promoting systemic inflammation. Arcinogenesis, immune evasion, and chronic inflammation have all been linked to changes in gut flora, with certain bacteria being responsible for the development of certain cancers. New evidence suggests that the gut microbiota has a unique role in the development and treatment of malignant melanoma¹⁰⁴. Vitali et al.¹⁰⁵ found things that might point to a connection between the gut microbiota and the cause of melanoma. Another research by Luo¹⁰⁶ found that *Lactobacillus reuteri* FLRE5K1 could do things like block the

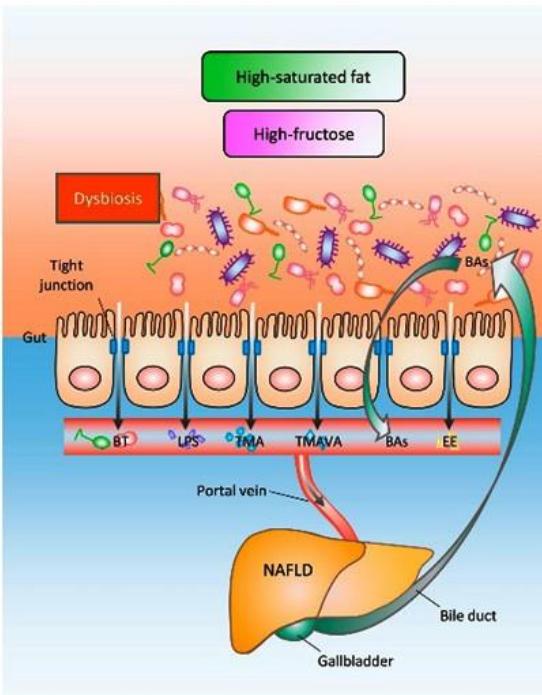

migration of the melanoma cell line B16-F10, delay the initiation of skin cancer, and boost the synthesis of anti-oncogenic cytokines in mice. So, it basically extended life. Bringing 11 bacterial strains that are common in ubiquitin ligase RNF5 negative mice into germ-free mice inhibits the development of melanoma and establishes anti-tumour immunity, according to study by Li et al.¹⁰⁷. At the same time, faecal transfer studies in lean mice indicated tumour evolution in obesity-deficient animals, and Pereira et al.¹⁰⁸ showed that IL-6 and the microbiota of overweight mice enhance melanoma advancement. These two studies demonstrate a different

Fig. 3. Effect of gut microbiome on skin dyshomeostasis

104. Vitiligo treatment strategy compared to the current standard procedures. White spots on the skin, produced by the death of melanocytes, are the hallmark of vitiligo, an autoimmune disorder. This autoimmune skin disorder¹¹⁰ affects half a percent to one percent of the world's population. Vitiligo is characterised by a gradual depletion of melanocytes in the skin and, in rare cases, in the hair follicles. It is now well accepted that CD8+ T lymphocytes attracted to the epidermis promote melanocytic cell loss. Genome-Wide Association Studies have identified over fifty loci in vitiligo sufferers that are associated with immune system¹¹¹ and melanogenesis. Dysbiosis in the stomach and, to a lesser degree, the skin, has been associated to a number of autoimmune and inflammatory diseases. Surprisingly, vitiligo¹⁰⁹ microbiome studies are still in their infancy. It is known that autoreactive CD8+ T cells are the main cause of melanocyte degeneration. Furthermore, CD8 activation is influenced by a

multitude of factors, including the elevated inflammatory state caused by an overabundance of proinflammatory chemicals. IL-1 is one example of a cytokine. Evidence suggests that CD4+ T cells, including Th1 and Th17 cells, facilitate the aberrant response of CD8+ T cells in vitiligo^{112, 113}. There has never been a study on the association between the gut microbiota and the autoimmune state in vitiligo, although there may be a connection between the two. Hadi et al.¹¹⁴ reports that a high prevalence of inflammatory bowel disease (IBD) in vitiligo patients. IBD is an autoimmune disorder that is associated with an aberrant gut microbiota. Faster depigmentation, less bacteria in faecal pellets, and altered T cell distribution in tissues and blood were all found to be correlated with ampicillin treatment in an experiment by Dellacecca et al.¹¹⁷, which suggests a link between gut dysbiosis and ampicillin-induced depigmentation. Recent research by Ganju et al.¹¹⁸ indicates that vitiligo-related skin lesions

Fig. 4. Long-term consumption of a high-saturated-fat or high-fructose diet disrupts the balance of intestinal flora, which causes an increase in permeability and impaired gut barrier function. This is then followed by the entry of additional bacterial components and metabolites into the liver through the portal vein, such as lipopolysaccharides, trimethylamine, N, N, N-trimethyl-5-aminovaleric acid, and endogenous ethanol⁶⁸

distributed their microbiota specifically on their skin. The skin microbiome is thought to be very dynamic and affected by several variables, such as the skin's location and different microenvironments. Gut microbiota architecture, on the other hand, tends to be stable from early infancy onwards, even if sickness states might vary quickly (especially in autoimmune illnesses 111). New immunological treatments for vitiligo¹¹⁹ may emerge from a combination of probiotics-based treatment and skin microbiome maintenance.

The rash

Wheals (hives) or angioedema, or both, are symptoms of urticaria, a skin disorder. Repetitive itching wheals and/or angioedema that persist for more than six weeks in the absence of recognised triggering stimuli characterise chronic spontaneous urticaria (CSU), the most prevalent form of urticaria. When transitory

wheals persist almost daily for more than six weeks, it is considered a medical emergency. There has been an uptick in the incidence of CU in recent years, and it affects around 1% of the global population at some time. In urticaria, a common and diverse inflammatory skin condition, epidermal mast cells are activated and degranulate, and then histamine and other mediators are released. This causes sensory nerve activation, vasodilatation, plasma extravasation, and cellular recruitment 123, 124, 125. An imbalance of the cytokines Th1/Th2/Th17¹²⁶ may mediate pro-inflammatory responses caused by alterations in the gut microbiota, which in turn may impact the pathophysiology of CSU. While there has been little investigation into the gut microbiota of CSU patients, very little has shown a significant difference in the composition of the gut flora in CSU subjects and healthy controls.^{1,28, 129} Through the use of 16S rRNA gene sequencing, Wang et al.¹³⁰ characterised the gut microbiota of CSU patients. Additionally, the patients' metabolites were examined by metabolomics analysis. The most important results demonstrated that *Lactobacillus*, *Turicibacter*, and *Lachnobacterium* were significantly upregulated, whereas *Phascolarctobacterium* was downregulated. Through G protein coupled receptors, the disturbed gut flora may exacerbate CSU development. Therefore, suggesting that CSU may be linked to disruptions in the gut flora. Another study found that all patients and healthy controls had *Enterobacteriaceae* in their faeces. The amounts of *Acinetobacter muciniphila*, *Candida albicans*, and *Fusarium prausnitzii* were much higher in the healthy controls' stool samples compared to the patients with CSU¹³¹. Phylum, order, family, genus, and species abundance in the gut microbiota of healthy individuals and those with urticaria were different. A review of the gut microbiomes of urticaria patients found that Firmicutes, Bacteroidetes, Proteobacteria, Verrucomicrobia, and Actinobacteria were the most common bacterial species^{132, 133, 134}. An elevated risk of urticaria was found in the genera *Coprococcus* 3 and *Defluviitaleaceae* UCG011135. *Coprococcus*, a genus of essential gut

bacteria, belongs to the Phylum Firmicutes. Previous research linked the severity of atopic disease¹³⁶ and found that *Coprococcus* was critical for immune responses¹²⁸. Also, for the first time, a positive correlation between urticaria and *Defluviitaleaceae UCG011* was found, and *Yun-Zhou et al.*¹³⁵ found a link between *Coprococcus* and urticaria. Although the exact impact is still unclear, it has been shown that butyric acid levels are negatively associated with *Defluviitaleaceae*¹³⁸ and positively associated with butyric acid¹³⁹. Skin condition Redness, pustules, telangiectasias, flushing, phymatous changes, and ocular clinical symptoms are the hallmarks of rosacea, a chronic skin illness that affects the face and is found all over the body. As part of management¹⁴⁰, you should take care of your skin, avoid triggers, and undergo treatments that target certain qualities. A complex pathophysiology including genetic and environmental variables, neurovascular responses, microbiome colonisation or infection, innate and adaptive immune system malfunction, and recurrent inflammation is at the heart of rosacea, a chronic inflammatory skin disorder. A wide variety of gastrointestinal disorders, including IBS, inflammatory bowel disease, celiac disease, gastroesophageal reflux disease, *Helicobacter pylori* infection, and small intestine bacterial overgrowth (SIBO), are associated with rosacea¹⁴⁴. The following genus-level bacterial strains were shown to be less prevalent in rosacea patients compared to healthy controls: Peptococcaceae family, *Methanobrevibacter*, *Slackia*, *Coprobacillus*, *Citrobacter*, *Desulfovibrio*, *Lactobacillus*, *Hemophilus*, *Roseburia*, and *Clostridium*^{142, 143}. Since rosacea has been linked to IBD and small intestine bacterial overgrowth, one might assume that the gut microbiota plays a role in the disease's aetiology. For a long time, people have thought that *Helicobacter pylori* is involved in the disease's pathogenesis¹⁴⁵. When the gut mucosa is damaged, as may happen in autoimmune diseases or changes to the microbiome¹⁴⁶, harmful substances can enter the circulation and cause injury to peripheral locations. Oral metronidazole therapy improves inflammatory bowel

disease symptoms and rosacea symptoms, lending credence to the idea that resident gut flora may be the underlying stimulus to an exaggerated immune response¹⁴⁷. Rosacea¹⁴⁸ may be caused by alterations in the gut microbiota, which can be influenced by several variables such as age, diet, birth mode, stress, and antibiotics. Some things may act as "triggers" for rosacea flare-ups. It is possible to classify them according to their association with heat, alcohol, capsaicin, or cinnamaldehyde¹⁴⁹. The trigger was hot beverages, especially coffee (33% of the time) and tea (30%). Wine (52% of cases) and strong liquor (42% of cases) were also frequent triggers. Capsaicin is a chemical found in several peppers and spices. Spicy sauce (54% of respondents), cayenne pepper (47% of respondents), red pepper (37% of respondents), and spices were also often reported as triggers. Lastly, cinnamaldehyde¹⁵⁰ is present in seemingly unrelated foods such as peppers, tomatoes, cinnamon, and chocolate. Inflammatory bowel disease (IBD) and rosacea are two related conditions that raise additional concerns. A nationwide cohort study in Taiwan with approximately 89,000 rosacea patients found an independent association with inflammatory bowel disease incidence¹⁵¹, in contrast to matched controls. However, the exact ways in which gut bacteria contribute to the pathophysiology of rosacea are not yet understood. One possible component of rosacea¹⁴⁹ treatment is dietary modification. The potential of probiotics as a medicine is well-known that probiotics may help with several diseases, and many clinical studies have shown that they can have an unusual effect on the skin, either directly or indirectly, which can be noteworthy from many perspectives. Cosmetically, probiotic bacteriotherapy may help with skin hypersensitivity, UV-induced skin damage, injury protection, and atopic dermatitis, acne, and allergic inflammation. It also shows promise as a treatment for acne and other skin diseases. Probiotics contain antimicrobial, competitive exclusion, and immunomodulatory characteristics, and research shows that they may improve the intestinal epithelial barrier's function.

Science is increasingly documenting the advantages of probiotics for human health, and the existing knowledge supports the benefits of probiotics against a range of disorders. In a study conducted by Lopes et al.¹⁵⁴, the goal was to find out which probiotic strains could adhere to human skin and which ones were effective against certain infections. The researchers also looked for potential quorum-sensing antagonists and tested which probiotic strains' cell-free culture supernatants could halt or eliminate the ability of certain pathogens to form biofilms. The researchers found that the CFCS of certain probiotic strains inhibited the growth of *Propionibacterium acnes*, *Escherichia coli*, and *Pseudomonas aeruginosa*, but had no effect on *Staphylococcus aureus*. Ten adults and five children took part in a study that looked into *Roseomonas mucosa* as a possible treatment for Alzheimer's disease. *Roseomonas mucosa* therapy was associated with significant decreases in disease severity, *S. aureus* load, and the requirement for topical steroids without harmful side effects or consequences. *Roseomonas mucosa* treatment should be further evaluated in a placebo-controlled trial¹⁵⁵ according to the study's early results. *Vitreoscilla filiformis* and *Lactococcus*, when used topically, have been shown to alleviate seborrhoeic dermatitis and atopic eczema by reducing mast cells and increasing T-reg cytokines¹⁵⁶. It is also possible to think that topical probiotics, similar to gut microbiome, which may improve immune surveillance and reduce chronic inflammation, may also reduce skin cancer incidence. Injecting or otherwise administering a topical probiotic to a cutaneous tumor¹⁵⁷ may also alter the tumour microenvironment by altering immune responses, which might have therapeutic implications. Research has shown that probiotics may effectively alleviate rosacea and other chronic inflammatory illnesses with minimal side effects (150, 151). In addition to not necessarily allowing for the recolonization of beneficial gut microbes, the majority of research have shown that the therapeutic effects of probiotics cannot be maintained following withdrawal. As microbes develop

resistance to antimicrobial drugs, the severity of skin diseases grows and their treatments become less effective¹⁶⁰.

In summary

Finally, research into the intricate web of relationships between the microbiota in our guts and our skin is a relatively new area of study, but it might revolutionise our approach to skincare and health in general. A person's skin health is directly impacted by the gut microbiota's role in controlling the immune system, nutrient absorption, and inflammatory reactions, according to the study. It is now quite clear that they play an important role in maintaining healthy skin, and that an imbalance in the stomach may lead to a variety of dermatological issues, including acne, eczema, and more. The gut microbiome influences skin health in several ways, including the production of bioactive chemicals, control of the immune system, and modulation of inflammation. This finding sheds light on the pathophysiology of skin diseases and paves the way for new treatment approaches. Probiotics, prebiotics, and dietary changes are gaining ground as powerful tools in the battle against these diseases, offering patients more choices for managing or even preventing skin-related issues, even though no treatment modalities have been found to offer long-term relief to these dermatological conditions. However, keep in mind that gut-skin health is a relatively new topic and that there is much more information to gather. We can only hope that future studies will further illuminate these intricate connections, which could lead to novel treatments and interventions for a range of skin disorders. As our understanding of the gut-skin axis grows, it becomes clear that a varied and balanced gut flora is critical to overall health and an integral part of holistic skincare practices. The gut has gone from being seen as an unimportant part of skin care to an essential part of maintaining good skin overall. By presenting a more effective and comprehensive path to healing and wellness, this paradigm shift offers individuals with skin disorders optimism for a brighter future.

ACKNOWLEDGMENT

This author is thankful to the Department of Biochemistry and SVKM's Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics (Autonomous) for their constant support and providing all the resources.

Conflict of Interest

There is no conflict of interest.

Funding sources

Financial support to the Department of Biochemistry from its management Shri Vile Parle Kelavani Mandal is gratefully acknowledged.

REFERENCES

- Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. *Nutr Rev.* 2012;70 Suppl 1(Suppl 1):S38-S44. doi:10.1111/j.1753-4887.2012.00493.x
- Petersen, C., Round, J.L. Defining dysbiosis and its influence on host immunity and disease. *Cell Microbiol.*, 2014; 16:1024–33.
- Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. *Nat Med.* 2014 Feb;20(2):159-66. doi: 10.1038/nm.3444. Epub 2014 Jan 5. PMID: 24390308.
- Backhed, F., Fraser, CM, Ringel Y, Sanders, M.E., Sartor, R.B., Sherman, P.M., et al., Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. *Cell Host Microbe.*, 2012; 12:611–22.
- Shreiner, A.B., Kao, J.Y., and Young, V.B. *Curr Opin Gastroenterol.* 2015; Jan, 31(1): 69–75.
- D'Argenio, V., Salvatore, F., The role of the gut microbe in the healthy adult status, *Clinica Chimica Acta*, 2015; Vol 451, Part A, Pages 97- 102, ISSN 0009-8981.
- Jandhyala, S.M., Talukdar, R., Subramanyam, Vuyyuru, H., Sasikala, M., Reddy, D., *World J Gastroenterol.* 2015; 8787–8803.
- Hsu, D.K., Fung, M.A., Chen, H.L. Role of skin and gut microbiota in the pathogenesis of psoriasis, an inflammatory skin disease. *Med Microcol.* 2020; 4:100016.
- Ellis, S.R., Nguyen, M., Vaughn, A.R., Notay, M., Burney, W.A., Sandhu, S., Sivama, R.K. The skin and gut microbiome and its role in common dermatologic conditions. *Microorganisms.* 2019; 7(11):550.
- O'Neill, C.A., Monteleone, G., McLaughlin, J.T., Paus, R. The gut-skin axis in health and disease: A paradigm with therapeutic implications. *Bioessays.* 2016; 38, 1167–1176.
- Shah, K. R., Boland, C. R., Patel, M., Thrash, B., and Menter, A. Cutaneous manifestations of gastrointestinal disease: part I. *JAAD* 2013; 68, 189.e1-189.e21.
- Thrash, B., Patel, M., Shah, K. R., Boland, C. R., and Menter, A. Cutaneous manifestations of gastrointestinal disease: part II. *JAAD* 2013; 68, 211.e1-211.e33.
- De Pessemier, B., Grine, L., Debaere, M., Maes, A., Paetzold, B., Callewaert, C. Gut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. *Microorganisms.*, 2021; 9(2):353.
- Sinha, S., Lin, G., Ferenczi, K., The skin microbiome and the gut-skin axis, *Clinics in Dermatology*, 2021; Volume 39, Issue 5, Pages 829-839, ISSN 0738-081X,
- Szántó, M., Dózsa, A., Antal, D., Szabó, K., Kemény, L., Bai, P. 2019;
- Levkovich, T., Poutahidis, T., Smillie, C., Varian, B.J., Ibrahim, Y.M., Lakritz, J.R., Alm, E.J., Erdman, S.E. Probiotic bacteria induce a 'glow of health'. *PLoS ONE*, 2013; 8, e53867.
- Ramírez-Boscá, A., Navarro-López, V., Martínez-Andrés, A., Such, J., Francés, R., de la Parte, J.H., Asín-Llorca, M. Identification of bacterial DNA in the peripheral blood of patients with active psoriasis. *JAMA Dermatol.* 2015; 151, 670–671. microbiome in melanoma progression. *BMC Microbiol* 2022; 22, 63.
- Arck, P., Handjiski, B., Hagen, E., et al., Is there a 'gut-brain-skin axis'? *Exp Dermatol.* 2010; 19:401-5.
- Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J.H., Chinwalla, A.T., et al. Structure, function and diversity of the healthy human microbiome. *Nature.* 2012; 486:207–214.
- Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., et al. A human gut microbial gene catalogue established by metagenomic sequencing. *Nature.* 2010; 464:59–65.
- Damiani G, Bragazzi NL, Karimkhani Aksut C, et al. The Global, Regional, and National Burden of Psoriasis: Results and Insights From the Global Burden of Disease 2019 Study. *Front Med (Lausanne).* 2021;8:743180. Published 2021 Dec 16. doi:10.3389/fmed.2021.743180

22. Tian J, Zhang D, Yang Y, Huang Y, Wang L, Yao X, Lu Q. Global epidemiology of atopic dermatitis: a comprehensive systematic analysis and modelling study. *Br J Dermatol.* 2023 Dec 20;190(1):55-61. doi: 10.1093/bjod/ldad339. PMID: 37705227.

23. Xue Y, Bao W, Zhou J, et al. Global Burden, Incidence and Disability-Adjusted Life- Years for Dermatitis: A Systematic Analysis Combined With Socioeconomic Development Status, 1990-2019. *Front Cell Infect Microbiol.* 2022;12:861053. Published 2022 Apr 12. doi:10.3389/fcimb.2022.861053

24. Tan, J.K.L. & Bhate, Ketaki. (2015). A global perspective on the epidemiology of acne. *British Journal of Dermatology.* 172. 10.1111/bjd.13462.

25. Urban K, Mehrmal S, Uppal P, Giese RL, Delost GR. The global burden of skin cancer: A longitudinal analysis from the Global Burden of Disease Study, 1990-2017. *JAAD Int.* 2021;2:98-108. Published 2021 Jan 4. doi:10.1016/j.jdin.2020.10.013

26. Bibeau K, Pandya AG, Ezzedine K, et al. Vitiligo prevalence and quality of life among adults in Europe, Japan and the USA. *J Eur Acad Dermatol Venereol.* 2022;36(10):1831-1844. doi:10.1111/jdv.18257

27. Peck G, Hashim MJ, Shaughnessy C, Muddasani S, Elsayed NA, Fleischer AB Jr. Global Epidemiology of Urticaria: Increasing Burden among Children, Females and Low-income Regions. *Acta Derm Venereol.* 2021 Apr 22;101(4):adv00433. doi: 10.2340/00015555-3796. PMID: 33847367; PMCID: PMC9364256.

28. Gether L, Overgaard LK, Egeberg A, Thyssen JP. Incidence and prevalence of rosacea: a systematic review and meta-analysis. *Br J Dermatol.* 2018 Aug;179(2):282-289. doi: 10.1111/bjod.16481. Epub 2018 May 31. PMID: 29478264.

29. Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J.M., Kennedy, S., et al. Richness of human gut microbiome correlates with metabolic markers. *Nature.* 2013;500:541–546.

30. Macpherson, A.J. and McCoy, K.D. Stratification and compartmentalisation of immunoglobulin responses to commensal intestinal microbes. *Semin. Immunol.* 2013; 25, 358–363

31. Donaldson, G.P., Lee, S.M. and Mazmanian, S.K. Gut biogeography of the bacterial microbiota. *Nat. Rev. Microbiol.* 2015; 14, 20–32

32. Thursby, E., Juge, N., Introduction to the human gut microbiota. *Biochem J* 1 474 2017; (11): 1823–1836.

33. Flint, H., Scott, K., Louis, P. et al. The role of the gut microbiota in nutrition and health. *Nat Rev Gastroenterol Hepatol* 9, 2012; 577–589.

34. Durack, J., Lynch, S.V., J Exp Med 216 2019; (1): 20–40.

35. Samuelson, D. R., Welsh, D. A., and Shellito, J. E. Regulation of lung immunity and host defense by the intestinal microbiota. *Front Microbiol.* 2015; 6:1085.

36. Mahmud, M.R., Akter, S., Tamanna, S.K., Mazumder, L., Esti, I.Z., Banerjee, S., Hasan, M.R., Acharjee, M., Hossain, M.S. & Pirttilä, A.M. 2022; Article: 2096995

37. Coates, M., Lee, M.J., Norton, D., MacLeod, A.S., Norton, D., MacLeod, A.S., MacLeod, A.S. The skin and intestinal microbiota and their specific innate immune systems. *Front Immunol.* 2019; 10:10.

38. Salem, I., Ramser, A., Isham, N., Ghannoum, M.A. The gut microbiome as a major regulator of the gut-skin axis. *Front Microbiol.* 2018; 9:1459.

39. Alghamdi, H.A., Behiadin, A., Edris, S. Gut microbiome skin axis in the development of atopic dermatitis. *JPMA. The Journal of the Pakistan Medical Association.* 2021; 71(4):1221-1227 PMID: 34125775.

40. Liedtke, F. S. Gut-Skin axis and healthy skin: a systematic review. *International Journal of Nutrology.* 2023; 16(2).

41. Russler-Germain, E.V., Rengarajan, S., Hsieh, C.S. Antigen-specific regulatory T-cell responses to intestinal microbiota. *Mucosal Immunol.* 2017; 10(6):1375-1386

42. Sun, M., He, C., Cong, Y., Liu, Z. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. *Mucosal Immunol.* 2015; 8(5):969-978.

43. Haeberle, S., Wei, X., Bieber, K., et al. (2018)Regulatory T-cell deficiency leads to pathogenic bullous pemphigoid antigen 230 autoantibody and autoimmune bullous disease. *J Allergy Clin Immunol.* 2018

44. Melnik, B.C., John, S.M., Chen, W., Plewig, G. T helper 17 cell/regulatory T-cell imbalance in hidradenitis suppurativa/acne inversa: the link to hair follicle dissection, obesity, smoking and autoimmune comorbidities. *Br J Dermatol.* 2018

45. Owczarczyk-Saczonek, A., Czerwinska, J., Placek, W. The role of regulatory T

cells and anti-inflammatory cytokines in psoriasis. *Acta Dermatovenerol Alp Pannonica Adriat.* 2018; 27(1):17-23.

46. Boehncke, W.H., Schon, M.P. Psoriasis. *Lancet*, 386, 2015; 983–994.

47. Kamiya, K., Kishimoto, M., Sugai, J., Komine, M., Ohtsuki, M., Risk Factors for the Development of Psoriasis. *International Journal of Molecular Sciences.*, 2019; 20(18):4347.

48. Weigle, N., McBane, S., American Family Physician, Volume 87, Number 9 2013

49. Lowes, M.A., Suárez-Fariñas, M., and Krueger, J.G. *Annual Review of Immunology* 33:1, 2014; 227-255

50. Spencer, S.P., Fragiadakis, G.K., Sonnenburg, J.L. Pursuing Human-Relevant Gut Microbiota- Immune Interactions. *Immunity*, 51, 2019; 225–239.

51. Chelakkot, C., Ghim, J., Ryu, S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. *Exp. Mol. Med.*, 50, 2018; 103

52. Stevens, B.R., Roesch, L., Thiago, P., Russell, J.T., Pepine, C.J., Holbert, R.C., Raizada, M.K., Triplett, E.W. Depression phenotype identified by using single nucleotide exact amplicon sequence variants of the human gut microbiome. *Mol. Psychiatry*. 2020

53. Vallianou, N., Stratigou, T., Christodoulatos, G.S., Dalamaga, M. Understanding the Role of the Gut Microbiome and Microbial Metabolites in Obesity and Obesity-Associated Metabolic Disorders: Current Evidence and Perspectives. *Curr. Obes. Rep.* 8, 2019; 317–332.

54. Kitai, T., Tang, W.H.W. Gut microbiota in cardiovascular disease and heart failure. *Clin. Sci.*, 132, 2018; 85–91.

55. Nishida, A., Inoue, R., Inatomi, O., Bamba, S., Naito, Y., Andoh, A. Gut microbiota in the pathogenesis of inflammatory bowel disease. *Clin. J. Gastroenterol.* 11, 2018; 1–10.

56. Sikora, M., Stec, A., Chrabaszc, M., Knot, A., Waskiel-Burnat, A., Rakowska, A., Olszewska, M., Rudnicka, L. Gut Microbiome in Psoriasis: An Updated Review. *Pathogens.*, 2020; 9(6):463.

57. Chen, L., Li, J., Zhu, W., Kuang, Y., Liu, T., Zhang, W., Chem, X., Peng, C. *Front. Microbiol.*, Sec. *Microbial Immunology* Volume 11. 2020

58. Zakostelska, Z., Malkova, J., Klimesova, K., Rossman, P., Hornova, M., Novosadova, I., et al. Intestinal microbiota promotes psoriasis-like skin inflammation by enhancing Th17 response. 2016; *PLoS One* 11: e0159539.

59. Van Beelen, A. J., Teunissen, M. B., Kapsenberg, M. L., and de Jong, E. C. Interleukin-17 in inflammatory skin disorders. *Curr. Opin. Allergy Clin. Immunol.* 7, 2007; 374–381.

60. Huang, L., Gao, R., Yu, N. et al. Dysbiosis of gut microbiota was closely associated with psoriasis. *Sci. China Life Sci.* 62, 2019; 807–815.

61. Alesa, D.I., Alshamrani, H.M., Alzahrani, Y.A., Alamssi, D.N., Alzahrani, N.S., Almohammadi, M.E. The role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics. *J Family Med Prim Care.* 2019; 5,8(11):3496-3503.

62. Polak, K., Bergler-Czop, B., Szczepanek, M., Wojciechowska, K., Frłtczak, A., Kiss, N. Psoriasis and Gut Microbiome—Current State of Art. *International Journal of Molecular Sciences.* 2021; 22(9):4529.

63. Malinowska, M., Tokarz-Deptu³a, B., Deptu³a, W. The human microbiome. *Post. Mikrobiol.*, 2017; 56, 33–42.

64. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D., Fernandes, G., Tap, J., Bruls, T., Batto, J., et al. Enterotypes of the human gut microbiome. *Nature.*, 2011; 473, 174–180.

65. Hyun-Chang, K.O., Seung-Wook, J.W.A., Margaret, S., Moon-Bum, K., Kyung-Sool, K., Moon-Bum Kim, M.D., Department of Dermatology, School of Medicine, Pusan National University, 2010; 1-10 Ami-dong, Seo- gu, Busan 602-739, Korea

66. Ji Y, Yin Y, Sun L, Zhang W. The Molecular and Mechanistic Insights Based on Gut–Liver Axis: Nutritional Target for Non-Alcoholic Fatty Liver Disease (NAFLD) Improvement. *International Journal of Molecular Sciences.* 2020; 21(9):3066. <https://doi.org/10.3390/ijms21093066>

67. Saleh, D., Tanner, L. *Sutata Psoriasis*. In: *StatPearls*. StatPearls Publishing, Treasure Island (FL). 2022; PMID: 29494104.

68. Zhang, X., Shi, L., Sun, T., Guo K. & Geng, S., *BMCMicrobiology* volume 21, Article number 78. *Urticaria patientis* j. *Microbiol. Biotechnol.* 2021; 31, 747-755

69. Huang Y.H., Chang, L.C., Chang, Y.C., Chung, W.H., Yang, S.F., Su, S.C. Compositional Alteration of Gut Microbiota in PsoriasisTreated with IL-23 and IL-17 Inhibitors. *International Journal of Molecular Sciences.*, 2023; 24(5):4568.

70. Nermes, M., Kantele, J.M., Atosuo, T.J., Salminen, S., Isolauri, E. Interaction of orally administered *Lactobacillus rhamnosus* GG with skin and gut microbiota and humoral immunity in infants with atopic

dermatitis. *Clin. Exp. Allergy*, 2011; 41, 370–377.

71. Targan, S.R., Feagan, B., Vermeire, S., Panaccione, R., Melmed, G.Y., Landers, C., Li, D., Russell, C., Newmark, R., Zhang, N., et al. A randomized, double-blind, placebo-controlled Phase 2 study of brodalumab in patients with moderate-to-severe Crohn's disease. *Am. J. Gastroenterol.* 2016; 111, 1599–1607.

72. Hueber, W., Sands, B.E., Lewitzky, S., Vandemeulebroecke, M., Reinisch, W., Higgins, P.D., Wehkamp, J., Feagan, B.G., Yao, M.D., Karczewski, M., et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. *Gut*, 2012; 61, 1693–1700.

73. Avena-Woods C. Overview of atopic dermatitis. *The American Journal of Managed Care*. 2017; 23(8 Suppl): S115–S123. PMID: 28978208.

74. Kim, J.E., Kim, H.S. Microbiome of the Skin and Gut in Atopic Dermatitis (AD): Understanding the Pathophysiology and Finding Novel Management Strategies. *Journal of Clinical Medicine*, 2019; 8(4):444.

75. Zachariassen, L.F., Krych, L., Engkilde, K., Nielsen, D.S., Kot, W., Hansen, C.H., et al. Sensitivity to Oxazolone Induced Dermatitis is Transferable with Gut Microbiota in Mice. *Sci Rep.* 2017; 7:44385.

76. Paller, A.S., Kong, H.H., Seed, P., Naik, S., Scharschmidt, T.C., Gallo, R.L., Luger, T., Irvine, A.D., The microbiome in patients with atopic dermatitis, *Journal of Allergy and Clinical Immunology*, Volume 143, Issue 1, 2019; Pages 26-35, ISSN 0091-6749.

77. Reginald, K., Westritschnig, K., Linhart, B., Focke-Tejkl, M., Jahn-Schmid, B., Eckl-Dorna, J., et al. Staphylococcus Aureus Fibronectin- Binding Protein Specifically Binds IgE from Patients with Atopic Dermatitis and Requires Antigen Presentation for Cellular Immune Responses. *J Allergy Clin Immunol.* 2011; 128(1):82–91. e8.

78. Fang, Z., Li, L., Zhang, H., Zhao, J., Lu, W. and Chen, W. Gut Microbiota, Probiotics, and Their Interactions in Prevention and Treatment of Atopic Dermatitis: A Review. *Front. Immunol.* 2021; 12:720393.

79. Atarashi, K., Tanoue, T., Oshima, K., Suda, W., Nagano, Y., Nishikawa, H., et al. Treg Induction by A Rationally Selected Mixture of Clostridia Strains from the Human Microbiota. *Nature* 2013; 500(7461):232–6.

80. Zegarra-Ruiz, D.F., Kim, D.V., Norwood, K., Kim, M., Wu, W.H., Saldana-Morales FB, et al. Thymic Development of Gut-Microbiota- Specific T Cells. *Nature* 2021; 594(863):413–17.

81. Simonetti, O., Bacchetti, T., Ferretti, G., Molinelli, E., Rizzetto, G., Bellachioma, L., et al. Oxidative Stress and Alterations of Paraoxonases in Atopic Dermatitis. *Antioxidants (Basel)* 2021; 10, 697.

82. Sampaio, A.L.B., Mameri, A., Jeunon, T., Ramos- e-Silva, M., Nunes, A.P., Carneiro, S. Dermatite seborreica. *An Bras Dermatol.* 2011; 86(6):1061–74.

83. Mokos, Z.B., Kralj, M., Basta-Juzbašiæ, A., Jukia, LL., *Acta Dermatovenerol Croat Seborrheic dermatitis*, 2012; 20(2):98-104

84. Kamamoto, C., Nishikaku, A., Gompertz, O., Melo, A., Hassun, K., Bagatin, E. Cutaneous fungal microbiome: Malassezia yeasts in seborrheic dermatitis scalp in a randomized, comparative and therapeutic trial. *Dermato- endocrinology*, 2017; 9, e1361573

85. Reygagne, P., Bastien, P., Couavoux, M., Philippe, D., Renouf, M., Castiel-Higounenc, I., Gueniche, A. The positive benefit of Lactobacillus paracasei NCC2461 ST11 in healthy volunteers with moderate to severe dandruff. *Benef. Microbes*, 2017; 8, 671–680.

86. Odintsova, I., Dyudyun, A. Features of the composition of microorganisms inhabiting the intestinal mucosa in patients with seborrheic dermatitis. *Dermatovenerol. Cosmetol. Sexopathol.* 2019; 31–34.

87. Siddiqui, R., Makhlof, Z. & Khan, N.A. The increasing importance of the gut microbiome in acne vulgaris. *Folia Microbiol* 2022; 67, 825–835.

88. Afshar, M., Gallo, R.L. Innate immune defense system of the skin. *Vet. Dermatol.* 2013; 24, e8–e9

89. Navarro-López, V., Núñez-Delegido, E., Ruzaña-Costas, B., Sánchez-Pellicer, P., Agüera- Santos, J., Navarro-Moratalla, L. Probiotics in the Therapeutic Arsenal of Dermatologists. *Microorganisms*, 2021; 9, 1513.

90. Sánchez-Pellicer, P., Navarro- Moratalla, L., Núñez-Delegido, E., Ruzaña-Costas, B., Agüera-Santos, J., Navarro-López, V. Acne, Microbiome, and Probiotics: The Gut-Skin Axis. *Microorganisms*. 2022; 10(7):1303.

91. Bowe, W.P., Logan, A.C. Acne vulgaris, probiotics and the gut-brain-skin axis - Back to the future? *Gut Pathog.*, 2011; 3, 1.

92. Morales, P., Fujio, S., Navarrete, P., Ugalde, J.A., Magne, F., Carrasco-Pozo, C., Tralma, K., Quezada, M., Hurtado, C.,

Covarrubias, N., et al. Impact of Dietary Lipids on Colonic Function and Microbiota: An Experimental Approach Involving Orlistat-Induced Fat Malabsorption in Human Volunteers. *Clin. Transl. Gastroenterol.* 2016; 7, e161.

93. Yan, H.M., Zhao, H.J., Guo, D.Y., Zhu, P.Q., Zhang, C.L., Jiang, W. Gut microbiota alterations in moderate to severe acne vulgaris patients. *J. Dermatol.* 2018; 45, 1166–1171

94. Lee, D.K., Kim, M.J., Ham, J.W., An, H.M., Cha, M.K., Lee, S.W., Park, C.I., Shin, S.H., Lee, K.O., Kim, K.J., et al. In vitro evaluation of antibacterial activities and anti-inflammatory effects of *Bifidobacterium* spp. addressing acne vulgaris. *Arch. Pharmacal. Res.*, 2012; 35, 1065–1071.

95. Kwon, H.K., Lee, C.G., So, J.S., Chae, C.S., Hwang, J.S., Sahoo, A., Nam, J.H., Rhee, J.H., Hwang, K.C., Im, S.H. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. *Proc. Natl. Acad. Sci. USA*, 2010; 107, 2159–2164.

96. Lee, Y.B., Byun, E.J., Kim, H.S. Potential Role of the Microbiome in Acne: A Comprehensive Review. *Journal of Clinical Medicine.*, 2019; 8(7):987.

97. Leiter, U., Eigentler, T., Garbe, C. Epidemiology of skin cancer. *Adv Exp Med Biol.*, 2014; 810:120–140.

98. Apalla, Z., Lallas, A., Sotiriou, E., Lazaridou, E., Ioannides, D. Epidemiological trends in skin cancer. *Dermatol Pract Concept.*, 2017; 7(2):1-6.

99. Chen, S.T., Geller, A.C., Tsao, H. Update on the epidemiology of melanoma. *Curr Dermatol Rep.*, 2013; 2:24–34.

100. Rastrelli, M., Tropea, S., Rossi, C., Alaibac, M. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. *In Vivo.* 2014; 28:1005–1011

101. Yu, Y., Champer, J., Beynet, D., Kim, J., Friedman, A.J. The role of the cutaneous microbiome in skin cancer: lessons learned from the gut. *Journal of Drugs in Dermatology.* 2015; JDD.14(5):461-465. PMID: 25942663

102. Makaranka, S., Scutt, F., Frixou, M., Wensley, K.E., Sharma, R., Greenhowe, J. The gut microbiome and melanoma: A review. *Exp. Dermatol.*, 2022; 31, 1292–1301.

103. Vitali, F., Colucci, R., Di Paola, M., et al. Early melanoma invasivity correlates with gut fungal and bacterial profiles. *Br J Dermatol.* 2021; 186: 106-116.

104. Luo, M., Hu, M.M., Feng, X., XiaoLi, W., Dong, D.G., Wang, W.C. Preventive effect of *lactobacillus reuteri* on melanoma. *Biomed Pharmacother.*, 2020; 126:109929.

105. Li, Y., Tinoco, R., Elmén, L., et al. (2019) Gut microbiota dependent anti-tumor immunity restricts melanoma growth in *Rnf5* “/” mice. *Nat Commun.*, 2019; 10(1): 1492.

106. Pereira, F., ACL, M., Silva, M.B., et al. Interleukin-6 and the gut microbiota influence melanoma progression in obese mice. *Nutr Cancer.* 2021; 73(4): 642-651.

107. Bzioueche, H., Sjödin, K.S., West, C.E., Khemis, A., Rocchi, S., Passeron, T., Tulic, M.K., Analysis of Matched Skin and Gut Microbiome of Patients with Vitiligo Reveals Deep Skin Dysbiosis: Link with Mitochondrial and Immune Changes, *Journal of Investigative Dermatology*, Volume 141, Issue 9, 2021; Pages 2280-2290, ISSN 0022-202X.

108. Ezzedine, K., Eleftheriadou, V., Whitton, M., and van Geel, N. Vitiligo. *Lancet* 386, 2015; 74–84.

109. Roberts, G.H.L., Santorico, S.A., Spritz, R.A. The genetic architecture of vitiligo Pigment Cell Melanoma Res, 2020; 33 pp. 8-15

110. Czarnowicki, T., He, H., Leonard, A., Kim, H. J., Kameyama, N., Pavel, A. B., et al. Blood endotyping distinguishes the profile of vitiligo from that of other inflammatory and autoimmune skin diseases. *J. Allergy Clin. Immunol.* 2019; 143, 2095–2107.

111. Kotobuki, Y., Tanemura, A., Yang, L., Itoi, S., Wataya-Kaneda, M., Murota, H., et al. Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. *Pigment Cell Melanoma Res.* 2012; 25, 219–230.

112. Hadi, A., Wang, J. F., Uppal, P., Penn, L. A., and Elbuluk, N. Comorbid diseases of vitiligo: a 10-year cross-sectional retrospective study of an urban US population. *J. Am. Acad. Dermatol.* 2019; 82, 628–633.

113. Lloyd-Price, J., Arze, C., Ananthakrishnan, A. N., Schirmer, M., Avila-Pacheco, J., Poon, T. W., et al. multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. *Nature* 2019; 569, 655–662.

114. Gevers, D., Kugathasan, S., Denson, L. A., Vázquez-Baeza, Y., Van Treuren, W., Ren, B., et al. The treatment-naïve microbiome in new-onset Crohn’s disease. *Cell Host Microbe* 2014; 15, 382–392. DOI: 10.1016/j.chom.2014.02.005

115. Dellacecca, E. R., Cosgrove, C., Mukhatayev, Z., Akhtar, S., Engelhard, V. H., Rademaker, A. et al. Antibiotics drive microbial imbalance and vitiligo development in mice. *J. Invest. Dermatol.* 2020; 140, 676–687.e676. DOI: 10.1016/j.jid.2019.08.435

116. Ganju, P., Nagpal, S., Mohammed, M. H., Nishal Kumar, P., Pandey, R., Natarajan, V. T., et al. Microbial community profiling shows dysbiosis in the lesional skin of Vitiligo subjects. *Sci. Rep.* 2016; 6:18761. DOI: 10.1038/srep18761

117. Ni, Qingrong, Ye, Zhubiao, Wang, Yinghan, Chen, Jianru, Zhang, Weigang, Ma, Cuiling, Li, Kai, Liu, Yu, Liu, Ling, Han, Zheyi, Gao, Tianwen, Jian, Zhe, Li, Shuli, Li, Chunying. *Frontiers in Microbiology. Microbial Dysbiosis in Vitiligo. Gut Microbial Dysbiosis and Plasma Metabolic Profile in Individuals with Vitiligo* 2020;

118. Giri, P.S., Bharti, A., Kemp, E.H., Dwivedi, M.K. *Microorganisms in Pathogenesis and Management of Vitiligo*. In: Dwivedi, M.K., Amaresan, N., Kemp, E.H., Shoenfeld, Y. (eds) *Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases*. Springer, Singapore. 2022;

119. Schaefer, P. Acute and chronic Urticaria: evaluation and treatment. *Am. Fam. Physician* 2017; 95, 717–724.

120. Gonçalo, M.; Giménez-Arnau, A.; Al-Ahmad, M.; Ben-Shoshan, M.; Bernstein, J.A.; Ensina, L.F.; Bernstein, J.A.; Bindslev-Jensen, C.; Brzoza, Z.; Buense Bedrikow, R.; et al. The global burden of chronic urticaria for the patient and society. *Br. J. Dermatol.*, 2021; 184, 226–236.

121. Church, M. K., Kolkhir, P., Metz, M. & Maurer, M. The role and relevance of mast cells in urticaria. *Immunol. Rev.* 2018; 282, 232–247.

122. Lee, S. J. et al. Prevalence and risk factors of urticaria with a focus on chronic urticaria in children. *Allergy Asthma Immunol. Res.* 2017; 9, 212–219.

123. Zuberbier, T., Balke, M., Worm, M., Edenharder, G. & Maurer, M. Epidemiology of urticaria: a representative cross-sectional population survey. *Clin. Exp. Dermatol.* 2010; 35, 869–873.

124. Al Bander, Z.; Nitert, M.D.; Mousa, A.; Naderpoor, N. The gut microbiota and inflammation: An overview. *Int. J. Environ. Res. Public Health*, 2020; 17, 7618

125. Krišto, M., Lugoviæ-Mihiæ, L., Muñoz, M., Rupnik, M., Mahnic, A., Ozretiæ, P., Jaganic, M., Æesiæ, D., Kuna, M. Gut Microbiome Composition in Patients with Chronic Urticaria: A Review of Current Evidence and Data. *Life.*; 2023; 13(1):152.

126. Wilmanski, T.; Rappaport, N.; Diener, Gibbons, S.M.; Price, N.D. From taxonomy to metabolic output: What factors define gut microbiome health? *Gut Microbes*, 2021; 13, 1907270

127. Godlewska, U.; Brzoza, P.; Kwiecieñ, K.; Kvitniewski, M.; Cichy, J. Metagenomic studies in inflammatory skin diseases. *Curr. Microbiol.*, 2020; 77, 3201–3212.

128. Wang, F.Y., Chi, C.C. Rosacea, Germs, and Bowels: A Review on Gastrointestinal Comorbidities and Gut–Skin Axis of Rosacea. *Adv Ther* 2021; 38, 1415–1424.

129. Nabizadeh, E., Jazani, N.H., Bagheri, M., Shahabi, S., Association of altered gut microbiota composition with chronic urticaria, *Annals of Allergy, Asthma & Immunology*, 2017; Volume 119, Issue 1, Pages 48-53, ISSN 1081-1206,

130. Lu, T., Chen, Y., Guo, Y., Sun, J., Shen, W., Yuan, M., Zhang, S., He, P., Jiao, X., “Altered Gut Microbiota Diversity and Composition in Chronic Urticaria”, *Disease Markers*, 2019; vol. 2019, Article ID 6417471, 11 pages.

131. Wang, Xin and Yi, Wanyu and He, Liting and Luo, Shuaihantian and Wang, Jiaqi and Jiang, Li and Long, Hai and Zhao, Ming and Lu, Qianjin (2021), Abnormalities in Gut Microbiota and Metabolism in Patients With Chronic Spontaneous Urticaria vol 12, 2021; <https://www.frontiersin.org/articles/10.3389/fimmu.2021.691304>

132. Zhang, X., Shi, L., Sun, T., Guo K. & Geng, S., *BMC 1. Microbiology* volume 21, Article number 78. *Urticaria patientis j. Microbiol. Biotechnol.* 2021; 31, 747-755

133. Yun-Zhou S., Qing-Feng T., Hai-Yan Q., Ying L., Hui Z. Causal relationship between gut microbiota and urticaria: a bidirectional two- sample mendelian randomization study. *Frontiers in Microbiology*. 2023; (Vol 14).

134. Xu, X., Zhang, W., Guo, M., Xiao, C., Fu, Z., Yu, S., et al. Integrated analysis of gut microbiome and host immune responses in COVID-19. *Front. Med.* 2022; 16, 263–275.

135. Nylund, L., Nermes, M., Isolauri, E., Salminen, S., de Vos, W. M., and Satokari, R. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria. *Allergy* 2015; 70, 241–244.

136. Zha, Z., Lv, Y., Tang, H., Li, T., Miao, Y., Cheng, J., et al. An orally administered butyrate-releasing xylan derivative reduces inflammation in dextran sulphate sodium-induced murine colitis. *Int. J. Biol. Macromol.* 2020; 156, 1217–1233.

137. Bondoni, L., Gabbianelli, R., Fedeli, D., Fiorini, D., Bergheim, I., Jin, C. J., et al. Positive effect of an electrolyzed reduced water on gutpermeability, fecal microbiota and liver in an animal model of Parkinson’s disease. 2019; *PLoS One* 14: e0223238.

138. Caren, G., Solomon, M.D., M.P.H., Editor November 2, *N Engl J Med* 2017; 377:1754-1764

139. Wang, F.Y., Chi, C.C. Rosacea, Germs, and Bowels: A Review on Gastrointestinal Comorbidities and Gut-Skin Axis of Rosacea. *Adv Ther* 2021; 38, 1415–1424.

140. Chen, L., Li, J., Zhu, W., Kuang, Y., Liu, T., Zhang, W., Chem, X., Peng, C. (2020) *Front. Microbiol.*, Sec. *Microbial Immunology* Volume 11 – 2020;

141. Nam, J.H.H.; Yun, Y.Y.; Kim, H.S.S.; Kim, H.N.N.; Jung, H.J.J.; Chang, Y.Y.; Ryu, S.; Shin, H.; Kim, H.L.; Kim, W.S. Rosacea and its association with enteral microbiota in Korean females. *Exp. Dermatol.*, 2018; 27, 37–42.

142. Egeberg, A.; Weinstock, L.B.; Thyssen, E.P.; Gislason, G.H.; Thyssen, J.P. Rosacea and gastrointestinal disorders: A population-based cohort study. *Br. J. Dermatol.*, 2017; 176, 100–106

143. Two, A.M., Wu, W., Gallo, R.L., Hata, T.R. Rosacea: part I. Introduction, categorization, histology, pathogenesis, and risk factors. *J Am Acad Dermatol.*; 2015; 72(5):749–58

144. Searle, T., Ali, F.R., Carolides, S., Al-Niaimi, F. Rosacea and the gastrointestinal system. *Australas J Dermatol.* 2020;

145. Vera N, Patel NU. Seminario-Vidal L. *Microbiol* 2017; 8:1889

152. Lopes EG, Moreira DA, Gullón P, Gullón B, Cardelle-Cobas A, Tavaria FK. Topical application of probiotics in skin: adhesion, antimicrobial and antibiofilm in vitro assays. *J Appl Microbiol*. 2017;122(2):450–61.

153. Myles IA, Earland NJ, Anderson ED, et al. First- in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. *JCI Insight*. 2018;3(9):e120608.

154. Yu, Y., Champer, J., Beynet, D., Kim, J., Friedman, A.J. The role of the cutaneous microbiome in skin cancer: lessons learned from the gut. *Journal of Drugs in Dermatology: JDD*. 2015; 14(5):461-465. PMID: 25942663

155. Sherwani, M.A.; Tufail, S.; Muzaffar, A.F.; Rosacea comorbidities. *Dermatol Clin.*; 2018; 36(2):115–22

146. Hasan, N., Yang, H. Factors affecting the composition of the gut microbiota, and its modulation. *PeerJ*; 2019; 7:e7502.

147. Weiss E, Katta R. (2017) Diet and rosacea: the role of dietary change in the management of rosacea. *Dermatol Pract Concept.*; 2017; 7(4):31–37.

148. Scheman, A., Rakowski, E.M., Chou, V., Chhatriwala, A., Ross, J., Jacob, S.E. Balsam of Peru: past and future. *Dermatitis*; 2013; 24(4):153–160.

149. Wu C.Y., Chang Y.T., Juan C.K., et al. Risk of inflammatory bowel disease in patients with rosacea: Results from a nationwide cohort study in Taiwan. *J Am Acad Dermatol*; 2017; (155):1–7

150. M. Rahmati Roudsari, R. Karimi, S. Sohrabvandi & A. M. Mortazavian Health Effects of Probiotics on the Skin, *Critical Reviews in Food Science and Nutrition*, 2015; 55:9, 1219-1240.

151. El Hage R, Hernandez-Sanabria E, Van de Wiele T. Emerging trends in “smart probiotics”: functional consideration for the development of novel health and industrial applications. *Front*

156. Yusuf, N. The skin microbiome and immunesystem: Potential target for chemoprevention? *Photodermatol. Photoimmunol. Photomed.* 2018; 34, 25–34

157. Porubsky CF B, Alexandria B, Comeau V. The Role of Probiotics in Acne and Rosacea, Probiotics. Current Knowledge and Future Prospects, Shymaa Enany, IntechOpen. 2018;

158. Kober MM, Bowe WP. The effect of probiotics on immune regulation, acne, and photoaging. *Int J Womens Dermatol*. 2015;1(2):85-89. doi:10.1016/j.ijwd.2015.02.001

Shah, R. A., Hsu, J. I., Patel, R. R., Mui, U. N., & Tyring, S. K. (2022). Antibiotic resistance in dermatology: The scope of the problem and strategies to address it. *Journal of the American Academy of Dermatology*, 86(6), 1337–1345.